Skip to main content

On the Ziv–Merhav theorem beyond Markovianity I

Publication ,  Journal Article
Barnfield, N; Grondin, R; Pozzoli, G; Raquépas, R
Published in: Canadian Journal of Mathematics
June 1, 2025

We generalize to a broader class of decoupled measures a result of Ziv and Merhav on universal estimation of the specific cross (or relative) entropy, originally for a pair of multilevel Markov measures. Our generalization focuses on abstract decoupling conditions and covers pairs of suitably regular g-measures and pairs of equilibrium measures arising from the “small space of interactions” in mathematical statistical mechanics.

Duke Scholars

Published In

Canadian Journal of Mathematics

DOI

ISSN

0008-414X

Publication Date

June 1, 2025

Volume

77

Issue

3

Start / End Page

891 / 915

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Barnfield, N., Grondin, R., Pozzoli, G., & Raquépas, R. (2025). On the Ziv–Merhav theorem beyond Markovianity I. Canadian Journal of Mathematics, 77(3), 891–915. https://doi.org/10.4153/S0008414X24000178
Barnfield, N., R. Grondin, G. Pozzoli, and R. Raquépas. “On the Ziv–Merhav theorem beyond Markovianity I.” Canadian Journal of Mathematics 77, no. 3 (June 1, 2025): 891–915. https://doi.org/10.4153/S0008414X24000178.
Barnfield N, Grondin R, Pozzoli G, Raquépas R. On the Ziv–Merhav theorem beyond Markovianity I. Canadian Journal of Mathematics. 2025 Jun 1;77(3):891–915.
Barnfield, N., et al. “On the Ziv–Merhav theorem beyond Markovianity I.” Canadian Journal of Mathematics, vol. 77, no. 3, June 2025, pp. 891–915. Scopus, doi:10.4153/S0008414X24000178.
Barnfield N, Grondin R, Pozzoli G, Raquépas R. On the Ziv–Merhav theorem beyond Markovianity I. Canadian Journal of Mathematics. 2025 Jun 1;77(3):891–915.

Published In

Canadian Journal of Mathematics

DOI

ISSN

0008-414X

Publication Date

June 1, 2025

Volume

77

Issue

3

Start / End Page

891 / 915

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics