On roots of Wiener polynomials of trees
Publication
, Journal Article
Wang, D
Published in: Discrete Mathematics
January 1, 2020
The Wiener polynomial of a connected graph G is the polynomial W(G;x)=∑
Duke Scholars
Published In
Discrete Mathematics
DOI
ISSN
0012-365X
Publication Date
January 1, 2020
Volume
343
Issue
1
Related Subject Headings
- Computation Theory & Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Wang, D. (2020). On roots of Wiener polynomials of trees. Discrete Mathematics, 343(1). https://doi.org/10.1016/j.disc.2019.111643
Wang, D. “On roots of Wiener polynomials of trees.” Discrete Mathematics 343, no. 1 (January 1, 2020). https://doi.org/10.1016/j.disc.2019.111643.
Wang D. On roots of Wiener polynomials of trees. Discrete Mathematics. 2020 Jan 1;343(1).
Wang, D. “On roots of Wiener polynomials of trees.” Discrete Mathematics, vol. 343, no. 1, Jan. 2020. Scopus, doi:10.1016/j.disc.2019.111643.
Wang D. On roots of Wiener polynomials of trees. Discrete Mathematics. 2020 Jan 1;343(1).
Published In
Discrete Mathematics
DOI
ISSN
0012-365X
Publication Date
January 1, 2020
Volume
343
Issue
1
Related Subject Headings
- Computation Theory & Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0802 Computation Theory and Mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics