Skip to main content
Journal cover image

Modified Erdös–Ginzburg–Ziv constants for Z∕nZ and (Z∕nZ)2

Publication ,  Journal Article
Berger, A; Wang, D
Published in: Discrete Mathematics
April 1, 2019

For an abelian group G and an integer t>0, the modified Erdös–Ginzburg–Ziv constant st(G) is the smallest integer ℓ such that any zero-sum sequence of length at least ℓ with elements in G contains a zero-sum subsequence (not necessarily consecutive) of length t. We compute st(G) for G=Z∕nZ and for G=(Z∕nZ)2 when t=n.

Duke Scholars

Published In

Discrete Mathematics

DOI

ISSN

0012-365X

Publication Date

April 1, 2019

Volume

342

Issue

4

Start / End Page

1113 / 1116

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0802 Computation Theory and Mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Berger, A., & Wang, D. (2019). Modified Erdös–Ginzburg–Ziv constants for Z∕nZ and (Z∕nZ)2. Discrete Mathematics, 342(4), 1113–1116. https://doi.org/10.1016/j.disc.2018.12.024
Berger, A., and D. Wang. “Modified Erdös–Ginzburg–Ziv constants for Z∕nZ and (Z∕nZ)2.” Discrete Mathematics 342, no. 4 (April 1, 2019): 1113–16. https://doi.org/10.1016/j.disc.2018.12.024.
Berger A, Wang D. Modified Erdös–Ginzburg–Ziv constants for Z∕nZ and (Z∕nZ)2. Discrete Mathematics. 2019 Apr 1;342(4):1113–6.
Berger, A., and D. Wang. “Modified Erdös–Ginzburg–Ziv constants for Z∕nZ and (Z∕nZ)2.” Discrete Mathematics, vol. 342, no. 4, Apr. 2019, pp. 1113–16. Scopus, doi:10.1016/j.disc.2018.12.024.
Berger A, Wang D. Modified Erdös–Ginzburg–Ziv constants for Z∕nZ and (Z∕nZ)2. Discrete Mathematics. 2019 Apr 1;342(4):1113–1116.
Journal cover image

Published In

Discrete Mathematics

DOI

ISSN

0012-365X

Publication Date

April 1, 2019

Volume

342

Issue

4

Start / End Page

1113 / 1116

Related Subject Headings

  • Computation Theory & Mathematics
  • 4904 Pure mathematics
  • 4901 Applied mathematics
  • 0802 Computation Theory and Mathematics
  • 0102 Applied Mathematics
  • 0101 Pure Mathematics