Measurement of neutron production in atmospheric neutrino interactions at Super-Kamiokande
We present measurements of total neutron production from atmospheric neutrino interactions in water, analyzed as a function of electron-equivalent visible energy over a range of 30 MeV to 10 GeV. These results are based on 4,270 days of data collected by Super-Kamiokande, including 564 days with 0.011 wt% gadolinium added to enhance neutron detection. Neutron signal selection is based on a neural network trained on simulation, with its performance validated using an Am/Be neutron point source. The measurements are compared to predictions from neutrino event generators combined with various hadron-nucleus interaction models, which include an intranuclear cascade model and a nuclear deexcitation model. We observe significant variations in the predictions depending on the choice of hadron-nucleus interaction model. We discuss key factors that contribute to describing our data, such as in-medium effects in the intranuclear cascade and the accuracy of statistical evaporation modeling.