Skip to main content

Boosting Generalizability in NPC ART Prediction via Multi-omics Feature Mapping

Publication ,  Conference
Sheng, J; Li, Z; Zhang, J; Lam, S; Chen, Z; Xing, L; Cai, J
Published in: Lecture Notes in Computer Science
January 1, 2026

Adaptive radiotherapy (ART) improves treatment precision by adapting to anatomical changes, but its clinical adoption is limited by high costs, patient burden, and institutional variability. To address this, we propose a robust multi-omics nomogram for predicting ART eligibility in nasopharyngeal carcinoma (NPC) patients by integrating multi-modality Genomap signatures with clinical factors. Using retrospective data from 311 patients at Queen Elizabeth Hospital (training set) and 192 patients at Queen Mary Hospital (external test set), we extracted 7,956 radiomics features from six regions-of-interest (ROIs) across contrast-enhanced computed tomography (CECT), magnetic resonance imaging (MRI), and dose modalities, alongside 132 geometric features capturing spatial relationships between ROIs. Feature selection via LASSO identified 35 radiomic, 8 dosiomic, and 4 geometric features for analysis. The Genomap model achieved an accuracy of 80% and an AUC of 90% across modalities, while the integrated nomogram demonstrated superior performance with 88% accuracy and 96% AUC. Our results show that Genomap ensures generalizability and robustness, providing a reliable tool for personalized ART planning in NPC patients.

Duke Scholars

Published In

Lecture Notes in Computer Science

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

January 1, 2026

Volume

15974 LNCS

Start / End Page

35 / 44

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sheng, J., Li, Z., Zhang, J., Lam, S., Chen, Z., Xing, L., & Cai, J. (2026). Boosting Generalizability in NPC ART Prediction via Multi-omics Feature Mapping. In Lecture Notes in Computer Science (Vol. 15974 LNCS, pp. 35–44). https://doi.org/10.1007/978-3-032-05182-0_4
Sheng, J., Z. Li, J. Zhang, S. Lam, Z. Chen, L. Xing, and J. Cai. “Boosting Generalizability in NPC ART Prediction via Multi-omics Feature Mapping.” In Lecture Notes in Computer Science, 15974 LNCS:35–44, 2026. https://doi.org/10.1007/978-3-032-05182-0_4.
Sheng J, Li Z, Zhang J, Lam S, Chen Z, Xing L, et al. Boosting Generalizability in NPC ART Prediction via Multi-omics Feature Mapping. In: Lecture Notes in Computer Science. 2026. p. 35–44.
Sheng, J., et al. “Boosting Generalizability in NPC ART Prediction via Multi-omics Feature Mapping.” Lecture Notes in Computer Science, vol. 15974 LNCS, 2026, pp. 35–44. Scopus, doi:10.1007/978-3-032-05182-0_4.
Sheng J, Li Z, Zhang J, Lam S, Chen Z, Xing L, Cai J. Boosting Generalizability in NPC ART Prediction via Multi-omics Feature Mapping. Lecture Notes in Computer Science. 2026. p. 35–44.

Published In

Lecture Notes in Computer Science

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

January 1, 2026

Volume

15974 LNCS

Start / End Page

35 / 44

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences