Skip to main content

Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet

Publication ,  Conference
Pu, Y; Zhu, Y; Qu, J; Wang, X; Li, W; Zhao, M; Yu, P; Li, Z; Teng, X; Zhang, X; Zhang, J; Peng, T; Cai, J; Ren, G
Published in: Lecture Notes in Computer Science
January 1, 2026

Breast cancer poses a serious risk to women’s health, making early detection critical. Dynamic Contrast-Enhanced MRI (DCE-MRI) aids diagnosis by using a contrast agent to highlight tissue details, but its cost and health risks limit accessibility. This study proposes a conditional Generative Adversarial Network (cGAN) to enhance MRI images, incorporating a novel generator (VMKANet, based on Vision Mamba and Kolmogorov-Arnold Network) and a discriminator (CAViT, using Vision Transformer with Cross Attention). To our knowledge, this is the first method to generate Breast DCE-MRI images from single-modality MRI data using Mamba. Our approach shows significant improvements in image quality, validated by strong Spearman correlation (R), high structural similarity index (SSIM), enhanced mutual information (MI), reduced normalized root mean square error (NRMSE), and lower symmetric mean absolute percent error (SMAPE). Results demonstrate that VMKANet and CAViT effectively enhance breast MRI images, promising safer and more affordable diagnostic capabilities.

Duke Scholars

Published In

Lecture Notes in Computer Science

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

January 1, 2026

Volume

16178 LNCS

Start / End Page

150 / 159

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Pu, Y., Zhu, Y., Qu, J., Wang, X., Li, W., Zhao, M., … Ren, G. (2026). Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet. In Lecture Notes in Computer Science (Vol. 16178 LNCS, pp. 150–159). https://doi.org/10.1007/978-3-032-06624-4_16
Pu, Y., Y. Zhu, J. Qu, X. Wang, W. Li, M. Zhao, P. Yu, et al. “Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet.” In Lecture Notes in Computer Science, 16178 LNCS:150–59, 2026. https://doi.org/10.1007/978-3-032-06624-4_16.
Pu Y, Zhu Y, Qu J, Wang X, Li W, Zhao M, et al. Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet. In: Lecture Notes in Computer Science. 2026. p. 150–9.
Pu, Y., et al. “Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet.” Lecture Notes in Computer Science, vol. 16178 LNCS, 2026, pp. 150–59. Scopus, doi:10.1007/978-3-032-06624-4_16.
Pu Y, Zhu Y, Qu J, Wang X, Li W, Zhao M, Yu P, Li Z, Teng X, Zhang X, Zhang J, Peng T, Cai J, Ren G. Revealing New Possibilities for Breast MRI Enhancement: Mamba-Driven Cross-Attention GAN with VMKANet. Lecture Notes in Computer Science. 2026. p. 150–159.

Published In

Lecture Notes in Computer Science

DOI

EISSN

1611-3349

ISSN

0302-9743

Publication Date

January 1, 2026

Volume

16178 LNCS

Start / End Page

150 / 159

Related Subject Headings

  • Artificial Intelligence & Image Processing
  • 46 Information and computing sciences