Skip to main content
Journal cover image

Gradient estimates for the conductivity problem with imperfect bonding interfaces

Publication ,  Journal Article
Dong, H; Yang, Z; Zhu, H
Published in: Journal Fur Die Reine Und Angewandte Mathematik
January 1, 2026

We study the field concentration phenomenon between two closely spaced perfect conductors with imperfect bonding interfaces of low conductivity type. The boundary condition on these interfaces is given by a Robin-type boundary condition. We discover a new dichotomy for the field concentration depending on the bonding parameter y. Specifically, we show that the gradient of solution is uniformly bounded independent of E (the distance between two inclusions) when y is sufficiently small. However, the gradient may blow up when y is large. Moreover, we identify the threshold of y and the optimal blow-up rates under certain symmetry assumptions. The proof relies on a crucial anisotropic gradient estimate in the thin neck between two inclusions. We develop a general framework for establishing such estimate, which is applicable to a wide range of elliptic equations and boundary conditions.

Duke Scholars

Published In

Journal Fur Die Reine Und Angewandte Mathematik

DOI

EISSN

1435-5345

ISSN

0075-4102

Publication Date

January 1, 2026

Volume

2026

Issue

830

Start / End Page

101 / 139

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Dong, H., Yang, Z., & Zhu, H. (2026). Gradient estimates for the conductivity problem with imperfect bonding interfaces. Journal Fur Die Reine Und Angewandte Mathematik, 2026(830), 101–139. https://doi.org/10.1515/crelle-2025-0076
Dong, H., Z. Yang, and H. Zhu. “Gradient estimates for the conductivity problem with imperfect bonding interfaces.” Journal Fur Die Reine Und Angewandte Mathematik 2026, no. 830 (January 1, 2026): 101–39. https://doi.org/10.1515/crelle-2025-0076.
Dong H, Yang Z, Zhu H. Gradient estimates for the conductivity problem with imperfect bonding interfaces. Journal Fur Die Reine Und Angewandte Mathematik. 2026 Jan 1;2026(830):101–39.
Dong, H., et al. “Gradient estimates for the conductivity problem with imperfect bonding interfaces.” Journal Fur Die Reine Und Angewandte Mathematik, vol. 2026, no. 830, Jan. 2026, pp. 101–39. Scopus, doi:10.1515/crelle-2025-0076.
Dong H, Yang Z, Zhu H. Gradient estimates for the conductivity problem with imperfect bonding interfaces. Journal Fur Die Reine Und Angewandte Mathematik. 2026 Jan 1;2026(830):101–139.
Journal cover image

Published In

Journal Fur Die Reine Und Angewandte Mathematik

DOI

EISSN

1435-5345

ISSN

0075-4102

Publication Date

January 1, 2026

Volume

2026

Issue

830

Start / End Page

101 / 139

Related Subject Headings

  • General Mathematics
  • 4904 Pure mathematics
  • 0101 Pure Mathematics