Fundamental Limits for High-Dimensional Factor Regression Models
Publication
, Conference
Rossetti, R; Reeves, G
Published in: IEEE International Symposium on Information Theory Proceedings
January 1, 2025
High-dimensional factor models enable the analysis of complex interactions in structured data. In this paper, we introduce a generalization of the matrix tensor product framework that incorporates covariate information. We rigorously derive fundamental limits for this model by characterizing the asymptotic mutual information and the associated minimum mean-squared error in the Bayes-optimal setting. By leveraging multilinear approximations, our approach extends prior results to settings involving heteroskedastic noise, asymmetric interactions, and higher-order tensors.
Duke Scholars
Published In
IEEE International Symposium on Information Theory Proceedings
DOI
ISSN
2157-8095
Publication Date
January 1, 2025
Citation
APA
Chicago
ICMJE
MLA
NLM
Rossetti, R., & Reeves, G. (2025). Fundamental Limits for High-Dimensional Factor Regression Models. In IEEE International Symposium on Information Theory Proceedings. https://doi.org/10.1109/ISIT63088.2025.11195649
Rossetti, R., and G. Reeves. “Fundamental Limits for High-Dimensional Factor Regression Models.” In IEEE International Symposium on Information Theory Proceedings, 2025. https://doi.org/10.1109/ISIT63088.2025.11195649.
Rossetti R, Reeves G. Fundamental Limits for High-Dimensional Factor Regression Models. In: IEEE International Symposium on Information Theory Proceedings. 2025.
Rossetti, R., and G. Reeves. “Fundamental Limits for High-Dimensional Factor Regression Models.” IEEE International Symposium on Information Theory Proceedings, 2025. Scopus, doi:10.1109/ISIT63088.2025.11195649.
Rossetti R, Reeves G. Fundamental Limits for High-Dimensional Factor Regression Models. IEEE International Symposium on Information Theory Proceedings. 2025.
Published In
IEEE International Symposium on Information Theory Proceedings
DOI
ISSN
2157-8095
Publication Date
January 1, 2025