Mesoscale tissue properties and electric fields in brain stimulation -- bridging the macroscopic and microscopic scales.
Accurate simulations of electric fields (E-fields) in brain stimulation depend on tissue conductivity representations that link macroscopic assumptions with underlying microscopic tissue structure. Mesoscale conductivity variations can produce meaningful changes in E-fields and neural activation thresholds but remain largely absent from standard macroscopic models. Recent microscopic models have suggested substantial local E-field perturbations and could, in principle, inform mesoscale conductivity. However, the quantitative validity of microscopic models is limited by fixation-related tissue distortion and incomplete extracellular-space reconstruction. We outline approaches that bridge macro- and microscales to derive consistent mesoscale conductivity distributions, providing a foundation for accurate multiscale models of E-fields and neural activation in brain stimulation.