Skip to main content

cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation.

Publication ,  Journal Article
Yang, H; Gao, B; Wu, B; Li, W; Zhu, X; Phoon, L; Luo, J; Gui, F; Zhao, W; Jia, L; Lan, L
Published in: Cell Death Differ
December 17, 2025

Repair of DNA double-strand breaks (DSBs) is essential for cells to maintain genome stability and cell survival. While cyclic GMP-AMP synthase (cGAS) is best known for its role in innate immunity, emerging evidence reveals that it plays regulatory roles in DNA damage response. In this study, we demonstrate that cGAS suppresses PARP1-mediated poly(ADP-ribose) (PAR) formation at both double-stranded DNA (dsDNA) and DNA:RNA hybrids. As a result, cGAS deficiency enhances PARP1-mediated microhomology-mediated end joining (MMEJ). Since MMEJ competes with transcription-coupled homologous recombination (TC-HR) at actively transcribed genomic regions, cGAS-mediated suppression of MMEJ consequently leads to efficient TC-HR with increased recruitment of RAD52 and RAD51. Mechanistically, the zinc finger domain of cGAS binds PAR, inhibiting PARP1 activation. In prostate cancer cells, loss of cGAS increases dependency on PARP1, rendering them more sensitive to PARP inhibitors. Collectively, our findings uncover a noncanonical role for cGAS in negatively regulating PARP1-mediated MMEJ and suggest its potential as a therapeutic biomarker in prostate cancer.

Duke Scholars

Published In

Cell Death Differ

DOI

EISSN

1476-5403

Publication Date

December 17, 2025

Location

England

Related Subject Headings

  • Biochemistry & Molecular Biology
  • 42 Health sciences
  • 32 Biomedical and clinical sciences
  • 31 Biological sciences
  • 11 Medical and Health Sciences
  • 06 Biological Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yang, H., Gao, B., Wu, B., Li, W., Zhu, X., Phoon, L., … Lan, L. (2025). cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation. Cell Death Differ. https://doi.org/10.1038/s41418-025-01637-x
Yang, Haibo, Boya Gao, Bo Wu, Wenjing Li, Xueping Zhu, Laiyee Phoon, Jing Luo, et al. “cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation.Cell Death Differ, December 17, 2025. https://doi.org/10.1038/s41418-025-01637-x.
Yang H, Gao B, Wu B, Li W, Zhu X, Phoon L, et al. cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation. Cell Death Differ. 2025 Dec 17;
Yang, Haibo, et al. “cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation.Cell Death Differ, Dec. 2025. Pubmed, doi:10.1038/s41418-025-01637-x.
Yang H, Gao B, Wu B, Li W, Zhu X, Phoon L, Luo J, Gui F, Zhao W, Jia L, Lan L. cGAS restricts PARP1-mediated microhomology-mediated end joining by suppressing poly-ADP-ribosylation. Cell Death Differ. 2025 Dec 17;

Published In

Cell Death Differ

DOI

EISSN

1476-5403

Publication Date

December 17, 2025

Location

England

Related Subject Headings

  • Biochemistry & Molecular Biology
  • 42 Health sciences
  • 32 Biomedical and clinical sciences
  • 31 Biological sciences
  • 11 Medical and Health Sciences
  • 06 Biological Sciences