An Architecture to Support Real-World Studies that Investigate the Autonomic Nervous System
Diabetes is a chronic disease with complications related to the autonomic nervous system (ANS) that can affect quality of life and lead to mortality. Clinicians and researchers currently rely on subjective and/or invasive means that don’t necessarily translate to real-world setting when assessing severity of certain diabetes complications. We elicited use-cases of studies aimed at understanding ANS in the context of diabetes to gather system requirements for designing an architecture to support sensor-based studies. Real-world studies would need to be capable of gathering contextual data as well as proxies for ANS symptoms from digital markers from an evolving sensor landscape, while also supporting the data needs of researchers before, during, and after data acquisition. The proposed architecture makes use of open source and commercially available mobile health technologies, and informatics platforms to meet the design criteria. Building and testing a prototype of the proposed architecture is planned to confirm the system performs as expected.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Artificial Intelligence & Image Processing
- 46 Information and computing sciences