Exact Lagrangian fillings of twist-spun torus links
Publication
, Journal Article
Hughes, J; Chen, V; Galloway, P; Wei, L
We construct exact Lagrangian fillings of Legendrian torus links Λ(k,n−k) that are fixed by a Legendrian loop that acts by 2πℓ/n rotation. Using these rotationally symmetric fillings, we produce fillings of the corresponding Legendrian twist-spun tori. Our construction is combinatorial in nature, relating symmetric weakly separated collections and plabic graphs to symmetric Legendrian weaves via the T-shift procedure of Casals, Le, Sherman-Bennett, and Weng. The main technical ingredient in this process is a necessary and sufficient condition for the existence of maximal weakly separated collections of k-element subsets of {1,…,n} that are fixed by addition of ℓ modulo n.
Duke Scholars
Citation
APA
Chicago
ICMJE
MLA
NLM
Hughes, J., Chen, V., Galloway, P., & Wei, L. (n.d.). Exact Lagrangian fillings of twist-spun torus links.
Hughes, James, Vincent Chen, Patton Galloway, and Luciana Wei. “Exact Lagrangian fillings of twist-spun torus links,” n.d.
Hughes J, Chen V, Galloway P, Wei L. Exact Lagrangian fillings of twist-spun torus links.
Hughes, James, et al. Exact Lagrangian fillings of twist-spun torus links.
Hughes J, Chen V, Galloway P, Wei L. Exact Lagrangian fillings of twist-spun torus links.