Identification of the spectrin subunit and domains required for formation of spectrin/adducin/actin complexes.
Adducin is an actin-binding protein that has been proposed to function as a regulated assembly factor for the spectrin/actin network. This study has addressed the question of the subunit and domains of spectrin required for formation of spectrin/adducin/actin complexes in in vitro assays. Quantitative evidence is presented that the beta-spectrin N-terminal domain plus the first two alpha-helical domains are required for optimal participation of spectrin in spectrin/adducin/actin complexes. The alpha subunit exhibited no detectable activity either alone or following association with beta-spectrin. The critical domains of beta-spectrin involved in complex formation were determined using recombinant proteins expressed in bacteria. The N-terminal domain (residues 1-313) of beta-spectrin associated with F-actin with a Kd of 26 microM, and promoted adducin binding to F-actin with half-maximal activation at 110 nM. Addition of the first alpha-helical domain (residues 1-422) lowered the Kdfor F-actin by 4-fold to 6 microM, but also reduced the capacity by 3-fold and had no effect on interaction with adducin. Further addition of the second alpha-helical domain (residues 1-528) did not alter binding to F-actin but resulted in a 2-fold increased activity in promoting adducin binding with half-maximal activation at 50 nM. Addition of up to eight additional alpha-helical domains (residues 1-1388) resulted in no further change in F-actin binding or association with adducin. These results demonstrate an unanticipated role of the first repeat of beta-spectrin in actin binding activity and of the second repeat in association with adducin/actin, and imply the possibility of an extended contact between adducin, spectrin, and actin involving several actin subunits.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Structure-Activity Relationship
- Spectrin
- Rabbits
- Protein Binding
- Macromolecular Substances
- Chickens
- Cattle
- Calmodulin-Binding Proteins
- Biochemistry & Molecular Biology
- Animals
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Structure-Activity Relationship
- Spectrin
- Rabbits
- Protein Binding
- Macromolecular Substances
- Chickens
- Cattle
- Calmodulin-Binding Proteins
- Biochemistry & Molecular Biology
- Animals