
Weighted completion of galois groups and galois actions on the fundamental group of ℙ1 -{0, 1, ∞}
Publication
, Journal Article
Hain, R; Matsumoto, M
Published in: Compositio Mathematica
November 1, 2003
Fix a prime number l. We prove a conjecture stated by Ihara, which he attributes to Deligne, about the action of the absolute Galois group on the pro-l completion of the fundamental group of the thrice punctured projective line. Similar techniques are also used to prove part of a conjecture of Goneharov, also about the action of the absolute Galois group on the fundamental group of the thrice punctured projective line. The main technical tool is the weighted completion of a profinite group with respect to a reductive representation (and other appropriate data). © 2003 Kluwer Academic Publishers.
Duke Scholars
Published In
Compositio Mathematica
DOI
ISSN
0010-437X
Publication Date
November 1, 2003
Volume
139
Issue
2
Start / End Page
119 / 167
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Hain, R., & Matsumoto, M. (2003). Weighted completion of galois groups and galois actions on the fundamental group of ℙ1 -{0, 1, ∞}. Compositio Mathematica, 139(2), 119–167. https://doi.org/10.1023/B:COMP.0000005077.42732.93
Hain, R., and M. Matsumoto. “Weighted completion of galois groups and galois actions on the fundamental group of ℙ1 -{0, 1, ∞}.” Compositio Mathematica 139, no. 2 (November 1, 2003): 119–67. https://doi.org/10.1023/B:COMP.0000005077.42732.93.
Hain R, Matsumoto M. Weighted completion of galois groups and galois actions on the fundamental group of ℙ1 -{0, 1, ∞}. Compositio Mathematica. 2003 Nov 1;139(2):119–67.
Hain, R., and M. Matsumoto. “Weighted completion of galois groups and galois actions on the fundamental group of ℙ1 -{0, 1, ∞}.” Compositio Mathematica, vol. 139, no. 2, Nov. 2003, pp. 119–67. Scopus, doi:10.1023/B:COMP.0000005077.42732.93.
Hain R, Matsumoto M. Weighted completion of galois groups and galois actions on the fundamental group of ℙ1 -{0, 1, ∞}. Compositio Mathematica. 2003 Nov 1;139(2):119–167.

Published In
Compositio Mathematica
DOI
ISSN
0010-437X
Publication Date
November 1, 2003
Volume
139
Issue
2
Start / End Page
119 / 167
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics