A reader for the Cognitive map
Publication
, Journal Article
Reid, AK; Staddon, JER
Published in: Information Sciences
January 1, 1997
A local diffusion model (Staddon and Reid, 1990) can reproduce exponential and Gaussian stimulus-generalization gradients. We show that a two-dimensional diffusion model, together with simple reinforcement assumptions, can reproduce many of the empirical properties of goal-directed spatial search, including area-restricted search, open-field foraging, barrier and detour problems, maze learning and spatial "insight." The model provides a simple, associationistic "reader" for Tolman's cognitive map. © Elsevier Science Inc. 1997.
Duke Scholars
Published In
Information Sciences
DOI
ISSN
0020-0255
Publication Date
January 1, 1997
Volume
100
Issue
1-4
Start / End Page
217 / 228
Related Subject Headings
- Artificial Intelligence & Image Processing
- 49 Mathematical sciences
- 46 Information and computing sciences
- 40 Engineering
- 09 Engineering
- 08 Information and Computing Sciences
- 01 Mathematical Sciences
Citation
APA
Chicago
ICMJE
MLA
NLM
Reid, A. K., & Staddon, J. E. R. (1997). A reader for the Cognitive map. Information Sciences, 100(1–4), 217–228. https://doi.org/10.1016/S0020-0255(97)00042-X
Reid, A. K., and J. E. R. Staddon. “A reader for the Cognitive map.” Information Sciences 100, no. 1–4 (January 1, 1997): 217–28. https://doi.org/10.1016/S0020-0255(97)00042-X.
Reid AK, Staddon JER. A reader for the Cognitive map. Information Sciences. 1997 Jan 1;100(1–4):217–28.
Reid, A. K., and J. E. R. Staddon. “A reader for the Cognitive map.” Information Sciences, vol. 100, no. 1–4, Jan. 1997, pp. 217–28. Scopus, doi:10.1016/S0020-0255(97)00042-X.
Reid AK, Staddon JER. A reader for the Cognitive map. Information Sciences. 1997 Jan 1;100(1–4):217–228.
Published In
Information Sciences
DOI
ISSN
0020-0255
Publication Date
January 1, 1997
Volume
100
Issue
1-4
Start / End Page
217 / 228
Related Subject Headings
- Artificial Intelligence & Image Processing
- 49 Mathematical sciences
- 46 Information and computing sciences
- 40 Engineering
- 09 Engineering
- 08 Information and Computing Sciences
- 01 Mathematical Sciences