Pattern formation and dynamics in Rayleigh-Bénard convection: Numerical simulations of experimentally realistic geometries
Rayleigh-Bénard convection is studied and quantitative comparisons are made, where possible, between theory and experiment by performing numerical simulations of the Boussinesq equations for a variety of experimentally realistic situations. Rectangular and cylindrical geometries of varying aspect ratios for experimental boundary conditions, including fins and spatial ramps in plate separation, are examined with particular attention paid to the role of the mean flow. A small cylindrical convection layer bounded laterally either by a rigid wall, fin, or a ramp is investigated and our results suggest that the mean flow plays an important role in the observed wavenumber. Analytical results are developed quantifying the mean flow sources, generated by amplitude gradients, and its effect on the pattern wavenumber for a large-aspect-ratio cylinder with a ramped boundary. Numerical results are found to agree well with these analytical predictions. We gain further insight into the role of mean flow in pattern dynamics by employing a novel method of quenching the mean flow numerically. Simulations of a spiral defect chaos state where the mean flow is suddenly quenched is found to remove the time dependence, increase the wavenumber and make the pattern more angular in nature. Published by Elsevier B.V.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics