The growth of carbon nanostructures on cobalt-doped carbon aerogels
By carbonizing cobalt-doped aerogel precursors directly at various temperatures, or by carbon monoxide decomposition of cobalt-doped carbon aerogels, different carbon nano-features such as carbon nano-filaments and graphitic nano-ribbons were grown on cobalt-doped carbon aerogel samples. Transmission electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction characterization results showed that metallic cobalt nano-particles form when heating the cobalt-doped aerogel samples over 500 °C. At low heating temperature, many highly oriented carbon thin films can be found on metallic cobalt nano-particles. When heating the samples at 850 °C, some carbon nano-filaments are obtained. While heating the samples at 1050 °C, many graphitic nano-ribbons are grown and the framework of the interconnected carbon particles of the sample is changed. Graphitic nano-ribbons can also be grown by CO decomposition of the cobalt-doped carbon aerogels. We can therefore control and modify the nanostructures of cobalt-doped carbon aerogels by heating them at different temperatures or by using CO decomposition. © 2002 Published by Elsevier Science B.V.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 0912 Materials Engineering
- 0204 Condensed Matter Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Applied Physics
- 5104 Condensed matter physics
- 4016 Materials engineering
- 3403 Macromolecular and materials chemistry
- 0912 Materials Engineering
- 0204 Condensed Matter Physics