
The relative efficiency of method of moments estimators
The asymptotic relative efficiency of efficient method of moments when implemented with a seminonparametric auxiliary model is compared to that of conventional method of moments when implemented with polynomial moment functions. Because the expectations required by these estimators can be computed by simulation, these two methods are commonly used to estimate the parameters of nonlinear latent variables models. The comparison is for the models in the Marron-Wand test suite, a scale mixture of normals, and the second largest order statistic of the lognormal distribution. The latter models are representative of financial market data and auction data, respectively, which are the two most common applications of simulation estimators. Efficient method of moments dominates conventional method of moments over these models. © 1999 Elsevier Science S.A. All rights reserved.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 3801 Applied economics
- 1403 Econometrics
- 1402 Applied Economics
- 0104 Statistics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 3801 Applied economics
- 1403 Econometrics
- 1402 Applied Economics
- 0104 Statistics