Skip to main content
Journal cover image

Noninformative priors for inferences in exponential regression models

Publication ,  Journal Article
Ye, K; Berger, JO
Published in: Biometrika
September 1, 1991

SUMMARY: In the exponential regression model, inference concerning the regression parameter is notoriously difficult, even when using the Bayesian noninformative prior approach. The reference prior approach (Bernardo, 1979; Berger & Bernardo, 1989) is considered, and argued to yield very satisfactory inferences. Estimation and credible sets are considered in a specific example. © 1991 Biometrika Trust.

Duke Scholars

Published In

Biometrika

DOI

ISSN

0006-3444

Publication Date

September 1, 1991

Volume

78

Issue

3

Start / End Page

645 / 656

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 3802 Econometrics
  • 1403 Econometrics
  • 0104 Statistics
  • 0103 Numerical and Computational Mathematics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Ye, K., & Berger, J. O. (1991). Noninformative priors for inferences in exponential regression models. Biometrika, 78(3), 645–656. https://doi.org/10.1093/biomet/78.3.645
Ye, K., and J. O. Berger. “Noninformative priors for inferences in exponential regression models.” Biometrika 78, no. 3 (September 1, 1991): 645–56. https://doi.org/10.1093/biomet/78.3.645.
Ye K, Berger JO. Noninformative priors for inferences in exponential regression models. Biometrika. 1991 Sep 1;78(3):645–56.
Ye, K., and J. O. Berger. “Noninformative priors for inferences in exponential regression models.” Biometrika, vol. 78, no. 3, Sept. 1991, pp. 645–56. Scopus, doi:10.1093/biomet/78.3.645.
Ye K, Berger JO. Noninformative priors for inferences in exponential regression models. Biometrika. 1991 Sep 1;78(3):645–656.
Journal cover image

Published In

Biometrika

DOI

ISSN

0006-3444

Publication Date

September 1, 1991

Volume

78

Issue

3

Start / End Page

645 / 656

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 3802 Econometrics
  • 1403 Econometrics
  • 0104 Statistics
  • 0103 Numerical and Computational Mathematics