Skip to main content
Journal cover image

On the estimation of a variance ratio

Publication ,  Journal Article
Gelfand, AE; Dey, DK
Published in: Journal of Statistical Planning and Inference
January 1, 1988

The estimation of the ratio of two independent normal variances is considered under scale invariant squared error loss function, when the means are unknown. The best invariant estimator is shown to be inadmissible. Two new classes of improved estimators are obtained, one by extending Stein (1964) and the other by extending Brown (1968). Numerical studies are presented to indicate the percent improvements in risk. © 1988.

Duke Scholars

Published In

Journal of Statistical Planning and Inference

DOI

ISSN

0378-3758

Publication Date

January 1, 1988

Volume

19

Issue

1

Start / End Page

121 / 131

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 0104 Statistics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Gelfand, A. E., & Dey, D. K. (1988). On the estimation of a variance ratio. Journal of Statistical Planning and Inference, 19(1), 121–131. https://doi.org/10.1016/0378-3758(88)90057-2
Gelfand, A. E., and D. K. Dey. “On the estimation of a variance ratio.” Journal of Statistical Planning and Inference 19, no. 1 (January 1, 1988): 121–31. https://doi.org/10.1016/0378-3758(88)90057-2.
Gelfand AE, Dey DK. On the estimation of a variance ratio. Journal of Statistical Planning and Inference. 1988 Jan 1;19(1):121–31.
Gelfand, A. E., and D. K. Dey. “On the estimation of a variance ratio.” Journal of Statistical Planning and Inference, vol. 19, no. 1, Jan. 1988, pp. 121–31. Scopus, doi:10.1016/0378-3758(88)90057-2.
Gelfand AE, Dey DK. On the estimation of a variance ratio. Journal of Statistical Planning and Inference. 1988 Jan 1;19(1):121–131.
Journal cover image

Published In

Journal of Statistical Planning and Inference

DOI

ISSN

0378-3758

Publication Date

January 1, 1988

Volume

19

Issue

1

Start / End Page

121 / 131

Related Subject Headings

  • Statistics & Probability
  • 4905 Statistics
  • 0104 Statistics