
Nonparametric Bayesian bioassay including ordered polytomous response
Publication
, Journal Article
Gelfand, AE; Kuo, L
Published in: Biometrika
September 1, 1991
Summary: Previous attempts at implementing fully Bayesian nonparametric bioassay have enjoyed limited success due to computational difficulties. We show here how this problem may be generally handled using a sampling based approach to develop desired marginal posterior distributions and their features. A useful extension is presented which treats the case of ordered polytomous response. Illustrative examples are provided. © 1991 Biometrika Trust.
Duke Scholars
Published In
Biometrika
DOI
ISSN
0006-3444
Publication Date
September 1, 1991
Volume
78
Issue
3
Start / End Page
657 / 666
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Gelfand, A. E., & Kuo, L. (1991). Nonparametric Bayesian bioassay including ordered polytomous response. Biometrika, 78(3), 657–666. https://doi.org/10.1093/biomet/78.3.657
Gelfand, A. E., and L. Kuo. “Nonparametric Bayesian bioassay including ordered polytomous response.” Biometrika 78, no. 3 (September 1, 1991): 657–66. https://doi.org/10.1093/biomet/78.3.657.
Gelfand AE, Kuo L. Nonparametric Bayesian bioassay including ordered polytomous response. Biometrika. 1991 Sep 1;78(3):657–66.
Gelfand, A. E., and L. Kuo. “Nonparametric Bayesian bioassay including ordered polytomous response.” Biometrika, vol. 78, no. 3, Sept. 1991, pp. 657–66. Scopus, doi:10.1093/biomet/78.3.657.
Gelfand AE, Kuo L. Nonparametric Bayesian bioassay including ordered polytomous response. Biometrika. 1991 Sep 1;78(3):657–666.

Published In
Biometrika
DOI
ISSN
0006-3444
Publication Date
September 1, 1991
Volume
78
Issue
3
Start / End Page
657 / 666
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics