
Generalized linear models with unknown link functions
SUMMARY: Generalized linear models are widely used by data analysis. However, the choice of the link function is often made arbitrarily. Here we permit the data to estimate the link function by incorporating it as an unknown in the model. Since the link function is usually taken to be strictly increasing, by a strictly increasing transformation of its range to the unit interval we can model it as a strictly increasing cumulative distribution function. The transformation results in a domain which is [0, 1]. We model the cumulative distribution function as a mixture of Beta cumulative distribution functions, noting that the latter family is dense within the collection of all continuous densities on [0, 1]. For the fitting of the model we take a Bayesian approach, encouraging vague priors, to focus upon the likehood. We discuss choices of such priors as well as the integrability of the resultant posteriors.Implementation of the Bayesian approach is carried out using sampling based methods, in particular, a tailored Metropolis-within-Gibbs algorithm. An illustrative example utilising data involving wave damage to cargo ships is provided. © 1994 Biometrika Trust.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics