Theory of periodic and solitary space charge waves in extrinsic semiconductors
We present a theory of the existence and stability of traveling periodic and solitary space charge wave solutions to a standard rate equation model of electrical conduction in extrinsic semiconductors which includes effects of field-dependent impurity impact ionization. A nondimensional set of equations is presented in which the small parameter β = (dielectric relaxation time) / (characteristic impurity time) ≫ 1 plays a crucial role for our singular perturbation analysis. For a narrow range of wave velocities a phase plane analysis gives a set of limit cycle orbits corresponding to periodic traveling waves. while for a unique value of wave velocity we find a homoclinic orbit corresponding to a moving solitary space charge wave of the type experimentally observed in p-type germanium. A linear stability analysis reveals all waves to be unstable under current bias on the infinite one-dimensional line. Finally, we conjecture that solitary waves may be stable in samples of finite length under voltage bias. © 1991.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 4903 Numerical and computational mathematics
- 4902 Mathematical physics
- 4901 Applied mathematics
- 0102 Applied Mathematics