A model of party constraints on optimal candidate positions
Publication
, Journal Article
Aldrich, JH; McGinnis, MD
Published in: Mathematical and Computer Modelling
1989
Duke Scholars
Published In
Mathematical and Computer Modelling
DOI
ISSN
0895-7177
Publication Date
1989
Volume
12
Issue
4-5
Start / End Page
437 / 450
Publisher
Elsevier BV
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Aldrich, J. H., & McGinnis, M. D. (1989). A model of party constraints on optimal candidate positions. Mathematical and Computer Modelling, 12(4–5), 437–450. https://doi.org/10.1016/0895-7177(89)90415-9
Aldrich, John H., and Michael D. McGinnis. “A model of party constraints on optimal candidate positions.” Mathematical and Computer Modelling 12, no. 4–5 (1989): 437–50. https://doi.org/10.1016/0895-7177(89)90415-9.
Aldrich JH, McGinnis MD. A model of party constraints on optimal candidate positions. Mathematical and Computer Modelling. 1989;12(4–5):437–50.
Aldrich, John H., and Michael D. McGinnis. “A model of party constraints on optimal candidate positions.” Mathematical and Computer Modelling, vol. 12, no. 4–5, Elsevier BV, 1989, pp. 437–50. Crossref, doi:10.1016/0895-7177(89)90415-9.
Aldrich JH, McGinnis MD. A model of party constraints on optimal candidate positions. Mathematical and Computer Modelling. Elsevier BV; 1989;12(4–5):437–450.
Published In
Mathematical and Computer Modelling
DOI
ISSN
0895-7177
Publication Date
1989
Volume
12
Issue
4-5
Start / End Page
437 / 450
Publisher
Elsevier BV
Related Subject Headings
- Numerical & Computational Mathematics
- 4903 Numerical and computational mathematics
- 4901 Applied mathematics
- 4613 Theory of computation
- 0802 Computation Theory and Mathematics
- 0103 Numerical and Computational Mathematics
- 0102 Applied Mathematics