From ATP to electron transfer: Electrostatics and free-energy transduction in nitrogenase
Nitrogenase consists of two proteins that work in concert to reduce atmospheric dinitrogen to a biologically useful form, ammonia (Curr. Opin. Chem. Bio. 2000, 4, 559-566; Chem. Rev. 1996, 96, 2965-2982). The smaller of the proteins (the so-called Fe protein) shuttles high-energy electrons to the larger subunit (the so-called MoFe protein) where the reduction of dinitrogen molecules takes place. The Fe protein catalyzes the hydrolysis of two MgATP molecules per electron transferred to the MoFe protein. The physical mechanism that couples the ATP hydrolysis and electron-transfer reactions in nitrogenase is one of the "great mysteries" of nitrogen fixation. Our goal is to describe the free-energy transformations that occur in nitrogenase based upon theoretical analysis of structural and electrochemical data. The electrostatic and thermodynamic analysis described here, made possible by recent X-ray structural data (and motivated by closely related electrochemical studies: Biochemistry 1997, 36, 12976-12983; FEBS Lett. 1998, 432, 55-58), shows that the ATP hydrolysis energy in nitrogenase serves the purpose of increasing the driving force of the electron-transfer reaction in and protein-protein complex. MgATP binding induces conformational changes and protein-protein association. The protein-protein docking excludes water from the negatively charged [Fe
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- 51 Physical sciences
- 40 Engineering
- 34 Chemical sciences
- 09 Engineering
- 03 Chemical Sciences
- 02 Physical Sciences