Designing molecules by optimizing potentials.
The astronomical number of accessible discrete chemical structures makes rational molecular design extremely challenging. We formulate the design of molecules with specific tailored properties as performing a continuous optimization in the space of electron-nuclear attraction potentials. The optimization is facilitated by using a linear combination of atomic potentials (LCAP), a general framework that creates a continuous property landscape from an otherwise unlinked set of discrete molecular-property values. A demonstration of this approach is given for the optimization of molecular electronic polarizability and hyperpolarizability. We show that the optimal structures can be determined without enumerating and separately evaluating the characteristics of the combinatorial number of possible structures, a process that would be much slower. The LCAP approach may be used with quantum or classical Hamiltonians, suggesting possible applications to drug design and new materials discovery.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Chemistry
- 40 Engineering
- 34 Chemical sciences
- 03 Chemical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Chemistry
- 40 Engineering
- 34 Chemical sciences
- 03 Chemical Sciences