Bayesian models for non-linear autoregressions
We discuss classes of Bayesian mixture models for nonlinear autoregressive times series, based on developments in semiparametric Bayesian density estimation in recent years. The development involves formal classes of multivariate discrete mixture distributions, providing flexibility in modeling arbitrary nonlinearities in time series structure and a formal inferential framework within which to address the problems of inference and prediction. The models relate naturally to existing kernel and related methods, threshold models and others, although they offer major advances in terms of parameter estimation and predictive calculations. Theoretical and computational aspects are developed here, the latter involving efficient simulation of posterior and predictive distributions. Various examples illustrate our perspectives on identification and inference using this mixture approach.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Econometrics
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics