
On smoothness properties of spatial processes
For inferential analysis of spatial data, probability modelling in the form of a spatial stochastic process is often adopted. In the univariate case, a realization of the process is a surface over the region of interest. The specification of the process has implications for the smoothness of process realizations and the existence of directional derivatives. In the context of stationary processes, the work of Kent (Ann. Probab. 17 (1989) 1432) pursues the notion of a.s. continuity while the work of Stein (Interpolation of Spatial Data; Some Theory for Kriging, Springer, New York, 1999) follows the path of mean square continuity (and, more generally, mean square differentiability). Our contribution is to clarify and extend these ideas in various ways. Our presentation is self-contained and not at a deep mathematical level. It will be of primary value to the spatial modeller seeking greater insight into these smoothness issues. © 2003 Elsevier Science (USA). All rights reserved.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics