
Directional Rates of Change under Spatial Process Models
Spatial process models are now widely used for inference in many areas of application. In such contexts interest is often in the rate of change of a spatial surface at a given location in a given direction. Examples include temperature or rainfall gradients in meteorology, pollution gradients for environmental data, and surface roughness assessment for digital elevation models. Because the spatial surface is viewed as a random realization, all such rates of change are random as well. We formalize the notions of directional finite difference processes and directional derivative processes building upon the concept of mean square differentiability as developed by Stein and Banerjee and Gelfand. We obtain complete distribution theory results under the assumptions of a stationary Gaussian process model either for the data or for spatial random effects. We present inference under a Bayesian framework which, in this setting, presents several advantages. Finally, we illustrate our methodology with a simulated dataset and also with a real estate dataset consisting of selling prices of individual homes.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1603 Demography
- 1403 Econometrics
- 0104 Statistics