
Bayesian Semiparametric Regression for Median Residual Life
With survival data there is often interest not only in the survival time distribution but also in the residual survival time distribution. In fact, regression models to explain residual survival time might be desired. Building upon recent work of Koftas & Gelfand [J. Amer. Statist. Assoc. 96 (2001) 1458], we formulate a semiparametric median residual life regression model induced by a semiparametric accelerated failure time regression model. We utilize a Bayesian approach which allows full and exact inference. Classical work essentially ignores covariates and is either based upon parametric assumptions or is limited to asymptotic inference in non-parametric settings. No regression modelling of median residual life appears to exist. The Bayesian modelling is developed through Dirichlet process mixing. The models are fitted using Gibbs sampling. Residual life inference is implemented extending the approach of Gelfand & Kottas [J. Comput. Graph. Statist. 11 (2002) 289]. Finally, we present a fairly detailed analysis of a set of survival times with moderate censoring for patients with small cell lung cancer.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 0104 Statistics