Skip to main content

The partition function in the Wigner-Kirkwood expansion

Publication ,  Journal Article
Matinyan, SG; Müller, B
Published in: Journal of Physics A: Mathematical and General
May 5, 2006

We study the semiclassical Wigner-Kirkwood (WK) expansion of the partition function Z(t) for arbitrary even homogeneous potentials, starting from the Bloch equation. As is well known, the phase-space kernel of Z satisfies the so-called Uhlenbeck-Beth equation, which depends on the gradients of the potential. We perform a chain of transformations to obtain novel forms of this equation that invite analogies with various physical phenomena and formalisms, such as diffusion processes, the Fokker-Planck equation and supersymmetric quantum mechanics. © 2006 IOP Publishing Ltd.

Duke Scholars

Published In

Journal of Physics A: Mathematical and General

DOI

EISSN

1361-6447

ISSN

0305-4470

Publication Date

May 5, 2006

Volume

39

Issue

18

Related Subject Headings

  • Mathematical Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 02 Physical Sciences
  • 01 Mathematical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Matinyan, S. G., & Müller, B. (2006). The partition function in the Wigner-Kirkwood expansion. Journal of Physics A: Mathematical and General, 39(18). https://doi.org/10.1088/0305-4470/39/18/L05
Matinyan, S. G., and B. Müller. “The partition function in the Wigner-Kirkwood expansion.” Journal of Physics A: Mathematical and General 39, no. 18 (May 5, 2006). https://doi.org/10.1088/0305-4470/39/18/L05.
Matinyan SG, Müller B. The partition function in the Wigner-Kirkwood expansion. Journal of Physics A: Mathematical and General. 2006 May 5;39(18).
Matinyan, S. G., and B. Müller. “The partition function in the Wigner-Kirkwood expansion.” Journal of Physics A: Mathematical and General, vol. 39, no. 18, May 2006. Scopus, doi:10.1088/0305-4470/39/18/L05.
Matinyan SG, Müller B. The partition function in the Wigner-Kirkwood expansion. Journal of Physics A: Mathematical and General. 2006 May 5;39(18).

Published In

Journal of Physics A: Mathematical and General

DOI

EISSN

1361-6447

ISSN

0305-4470

Publication Date

May 5, 2006

Volume

39

Issue

18

Related Subject Headings

  • Mathematical Physics
  • 51 Physical sciences
  • 49 Mathematical sciences
  • 02 Physical Sciences
  • 01 Mathematical Sciences