The nonstationary transition through resonance
This paper considers the resonant behavior of a mechanical oscillator during a linear frequency sweep. Both numerical and experimental results are presented. The experimental system consisting of a track in the shape of a potential energy surfaces has been used to highlight other types of nonlinear behavior and is here adapted so that the forcing frequency can be evolved continuously in time. The classic linear oscillator (with a parabolic potential well) is used as an introduction to illustrate basic features of the experiment and its response. Then, a track with a double well is used to assess nonstationary frequency effects on certain nonlinear characteristics, specifically amplitude jumps and flip bifurcations. © 1996 Kluwer Academic Publishers.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences