Thermal convection in rotating spherical annuli-1. Forced convection
The steady forced convection of a viscous fluid contained between two concentric spheres which are maintained at different temperatures and rotate about a common axis with different angular velocities is considered. Approximate solutions to the governing equations are obtained in terms of a regular perturbation solution valid for small Reynolds numbers and a modified Galerkin solution for moderate Reynolds numbers. The resulting flow pattern, temperature distribution, and heat-transfer characteristics are presented for the various cases considered. The theoretical heat-transfer results for small and moderate Reynolds number flows within a spherical annulus with a stationary outer sphere are compared with previous experimental results for the large Reynolds number flow situation. The difference between conduction, Stokes flow, and boundary-layer convection is shown. © 1978.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences