Optimal arrays of pin fins and plate fins in laminar forced convection
This paper reports the optimal geometry of an array of fins that minimizes the thermal resistance between the substrate and the flow forced through the fins. The flow regime is laminar. Two fin types are considered: round pin fins, and staggered parallel-plate fins. The optimization of each array proceeds in two steps: The optimal fin thickness is selected in the first step, and the optimal thickness of the fluid channel is selected in the second. The pin-fin array is modeled as a Darcy-flow porous medium. The flow past each plate fin is in the boundary layer regime. The optimal design of each array is described in terms of dimensionless groups. It is shown that the minimum thermal resistance of plate-fin arrays is approximately half of the minimum thermal resistance of heat sinks with continuous fins and fully developed laminar flow in the channels. © 1993 by ASME.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4012 Fluid mechanics and thermal engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0904 Chemical Engineering
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Mechanical Engineering & Transports
- 4012 Fluid mechanics and thermal engineering
- 0915 Interdisciplinary Engineering
- 0913 Mechanical Engineering
- 0904 Chemical Engineering