The departure from Darcy flow in natural convection in a vertical porous layer
An analytical and numerical study is reported of steady-state natural convection in a two-dimensional porous layer heated from the side. Contrary to previous investigations of the phenomenon, which were all based on the Darcy flow model, a vector generalization of Forchheimer's one-dimensional model is used in the present study, which is valid for all values of local Reynolds number based on pore size. A matched boundary layer solution of the type developed by Weber for Darcy flow is developed for the limit of large-pore Reynolds numbers (the "non-Darcy" limit). It is shown that the natural convection phenomenon in the non-Darcy limit is governed by a new dimensionless group, the Rayleigh number for the higher Reynolds number limit, Ra
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 51 Physical sciences
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
- 01 Mathematical Sciences