
The fluid dynamics of an attic space
This paper reports a fundamental study of the fluid dynamics inside a triangular (attic-shaped) enclosure with cold upper wall and warm horizontal bottom wall. The study was undertaken in three distinct parts. In the first part, the flow and temperature fields in the cavity are determined theoretically on the basis of an asymptotic analysis valid for shallow spaces (H/L→0, where H and L are the attic height and length). It is shown that in the H/L→0 limit the circulation consists of a single elongated cell driven by the cold upper wall. The net heat transfer in this limit is dominated by pure conduction. In the second part of the study, the transient behaviour of the attic fluid is examined, based on a scaling analysis. The transient phenomenon begins with the sudden cooling of the upper sloped wall. It is shown that both walls develop thermal and viscous layers whose thicknesses increase towards steady-state values. The criterion for the existence of distinct thermal layers in the steady state is (H/L)1/2. Ra
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation

Published In
DOI
EISSN
ISSN
Publication Date
Volume
Start / End Page
Related Subject Headings
- Fluids & Plasmas
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences