Transient flowmeter test: Simi-analytic crossflow model
The transient flowmeter test (TFMT) provides more information about the well-aquifer system than the traditional quasi-steady-state flowmeter test (QFMT). The TFMT duration may be much shorter than that of a QFMT, which is desirable at highly contaminated sites where the extracted water has to be treated as hazardous waste. Here we present the TFMT model that accounts for inter-layer crossflow, a thick skin surrounding the well, and wellbore storage. The model is derived under the simplifying assumptions of the pseudo-steady-state inter-layer crossflow and the uniform wellface flux within each layer. The semi-analytic solution is inverted numerically from the Laplace domain to the time domain. Layer and skin parameters are estimated from the TFMT data via the modified Levenberg-Marquardt algorithm. The estimation is robust when the initial parameter guesses are close to their true values. Otherwise, a computationally expensive search among the local minima of the objective function is necessary to find the parameter estimates. The modeling errors and the associated parameter estimation errors are evaluated in a number of synthetic TFMTs and compared to the corresponding results obtained with a general numerical model that relaxes the two simplifying assumptions. The TFMT provides reasonably accurate estimates of hydraulic conductivities for the aquifer layers and the damaged skins and order-of-magnitude estimates of layer specific storativities and hydraulic conductivities for the normal skin. The skin specific storativities should not be estimated from a TFMT. Multi-rate TFMTs with a step-variable pumping rate yield significantly more accurate parameters than constant-pumping-rate TFMTs. The calculated modeling errors may be useful in estimating the magnitude of parameter estimation errors from the TFMT. Our field tests in a coastal aquifer at the Lizzie Site in North Carolina (USA) demonstrate the feasibility of a TFMT for aquifer characterization. The downhole hydraulic conductivity profiles from our field and synthetic TFMTs are consistent with the corresponding profiles from QFMTs. © 2002 Elsevier Science Ltd. All rights reserved.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0102 Applied Mathematics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Environmental Engineering
- 4901 Applied mathematics
- 4005 Civil engineering
- 3707 Hydrology
- 0907 Environmental Engineering
- 0905 Civil Engineering
- 0102 Applied Mathematics