Compact lattice QED and the Coulomb potential
Publication
, Journal Article
Srivastava, YN; Widom, A; Friedman, MH; Panella, O
Published in: Phys. Lett. B (Netherlands)
1993
The potential energy of a static charge distribution on a lattice is rigorously computed in the standard compact quantum electrodynamic model. The method used follows closely that of Weyl for ordinary quantum electrodynamics in continuous spacetime. The potential energy of the static charge distribution is independent of temperature and can be calculated from the lattice version of Poisson's equation. It is the usual Coulomb potential
Duke Scholars
Published In
Phys. Lett. B (Netherlands)
DOI
Publication Date
1993
Volume
298
Issue
3-4
Start / End Page
405 / 408
Related Subject Headings
- Nuclear & Particles Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
- 0105 Mathematical Physics
Citation
APA
Chicago
ICMJE
MLA
NLM
Srivastava, Y. N., Widom, A., Friedman, M. H., & Panella, O. (1993). Compact lattice QED and the Coulomb potential. Phys. Lett. B (Netherlands), 298(3–4), 405–408. https://doi.org/10.1016/0370-2693(93)91841-A
Srivastava, Y. N., A. Widom, M. H. Friedman, and O. Panella. “Compact lattice QED and the Coulomb potential.” Phys. Lett. B (Netherlands) 298, no. 3–4 (1993): 405–8. https://doi.org/10.1016/0370-2693(93)91841-A.
Srivastava YN, Widom A, Friedman MH, Panella O. Compact lattice QED and the Coulomb potential. Phys Lett B (Netherlands). 1993;298(3–4):405–8.
Srivastava, Y. N., et al. “Compact lattice QED and the Coulomb potential.” Phys. Lett. B (Netherlands), vol. 298, no. 3–4, 1993, pp. 405–08. Manual, doi:10.1016/0370-2693(93)91841-A.
Srivastava YN, Widom A, Friedman MH, Panella O. Compact lattice QED and the Coulomb potential. Phys Lett B (Netherlands). 1993;298(3–4):405–408.
Published In
Phys. Lett. B (Netherlands)
DOI
Publication Date
1993
Volume
298
Issue
3-4
Start / End Page
405 / 408
Related Subject Headings
- Nuclear & Particles Physics
- 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
- 0201 Astronomical and Space Sciences
- 0105 Mathematical Physics