Parallel processing techniques for the speckle brightness phase aberration correction algorithm.
The speckle brightness adaptive algorithm has previously been implemented in approximately real-time on low frequency, one-dimensional arrays. To increase the speed of this technique, a temporally parallel algorithm and a spatially parallel algorithm are described. Theoretical analyses, simulation results and experimental measurements are presented for these algorithms. Theoretical predictions indicate that these techniques increase the correction speed, but some decrease in the accuracy of the compensating phase estimate occurs. Simulation results indicate that these parallel algorithms perform well at removing the effects of phase aberration. Preliminary experimental measurements demonstrate the correction speed improvements achievable with these algorithms.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 51 Physical sciences
- 40 Engineering
- 09 Engineering
- 02 Physical Sciences