Detection of buried targets via active selection of labeled data: Application to sensing subsurface UXO
When sensing subsurface targets, such as landmines and unexploded ordnance (UXO), the target signatures are typically a strong function of environmental and historical circumstances. Consequently, it is difficult to constitute a universal training set for design of detection or classification algorithms. In this paper, we develop an efficient procedure by which information-theoretic concepts are used to design the basis functions and training set, directly from the site-specific measured data. Specifically, assume that measured data (e.g., induction and/or magnetometer) are available from a given site, unlabeled in the sense that it is not known a priori whether a given signature is associated with a target or clutter. For N signatures, the data may be expressed as {x
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Geological & Geomatics Engineering
- 40 Engineering
- 37 Earth sciences
- 0909 Geomatic Engineering
- 0906 Electrical and Electronic Engineering
- 0404 Geophysics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Geological & Geomatics Engineering
- 40 Engineering
- 37 Earth sciences
- 0909 Geomatic Engineering
- 0906 Electrical and Electronic Engineering
- 0404 Geophysics