Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement
Ultra-wideband (UWB), short-pulse (SP) radar is investigated theoretically and experimentally for the detection and identification of targets buried in and placed atop soil. The calculations are performed using a rigorous, three-dimensional (3-D) Method of Moments algorithm for perfectly conducting bodies of revolution. Particular targets investigated theoretically include anti-personnel mines, anti-tank mines, and a 55-gallon drum, for which we model the time-domain scattered fields and the buried-target late-time resonant frequencies. With regard to the latter, the computed resonant frequencies are utilized to assess the feasibility of resonance-based buried-target identification for this class of targets. The measurements are performed using a novel UWB, SP synthetic aperture radar (SAR) implemented on a mobile boom. Experimental and theoretical results are compared. © 1997 IEEE.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Geological & Geomatics Engineering
- 40 Engineering
- 37 Earth sciences
- 0909 Geomatic Engineering
- 0906 Electrical and Electronic Engineering
- 0404 Geophysics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Geological & Geomatics Engineering
- 40 Engineering
- 37 Earth sciences
- 0909 Geomatic Engineering
- 0906 Electrical and Electronic Engineering
- 0404 Geophysics