Parallel implementation of the biorthogonal multiresolution time-domain method.
The three-dimensional biorthogonal multiresolution time-domain (Bi-MRTD) method is presented for both free-space and half-space scattering problems. The perfectly matched layer (PML) is used as an absorbing boundary condition. It has been shown that improved numerical-dispersion properties can be obtained with the use of smooth, compactly supported wavelet functions as the basis, whereas we employ the Cohen-Daubechies-Fouveau (CDF) biorthogonal wavelets. When a CDF-wavelet expansion is used, the spatial-sampling rate can be reduced considerably compared with that of the conventional finite-difference time-domain (FDTD) method, implying that larger targets can be simulated without sacrificing accuracy. We implement the Bi-MRTD on a cluster of allocated-memory machines, using the message-passing interface (MPI), such that very large targets can be modeled. Numerical results are compared with analytical ones and with those obtained by use of the traditional FDTD method.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1113 Opthalmology and Optometry
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optics
- 4009 Electronics, sensors and digital hardware
- 4006 Communications engineering
- 1113 Opthalmology and Optometry
- 0906 Electrical and Electronic Engineering
- 0205 Optical Physics