Digital beam attenuator technique for compensated chest radiography.
The feasibility of producing patient-specific beam attenuators for chest radiography has been investigated using an anthropomorphic phantom and a human volunteer. A low-dose test exposure is digitized, processed, and used to print a small cerium filter, which is placed in the x-ray beam near the collimator. The final radiograph is recorded on film. The technique results in relatively uniform film exposure, so that structures in all regions of the chest are simultaneously displayed with optimal film contrast. The equalized exposure improves image quality in the normally underpenetrated regions and reduces the role of cross-scatter from the lungs. The image is analogous to optical or computer-processed unsharp masking techniques, but the processing is accomplished in the x-ray beam and results in an improved exposure distribution, giving advantages that cannot be achieved with image processing techniques alone.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Radiography, Thoracic
- Radiographic Image Enhancement
- Nuclear Medicine & Medical Imaging
- Models, Structural
- Male
- Humans
- 3202 Clinical sciences
- 11 Medical and Health Sciences
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Location
Related Subject Headings
- Radiography, Thoracic
- Radiographic Image Enhancement
- Nuclear Medicine & Medical Imaging
- Models, Structural
- Male
- Humans
- 3202 Clinical sciences
- 11 Medical and Health Sciences