Skip to main content

Quantum dot infrared photodetectors

Publication ,  Journal Article
Bhattacharya, P; Stiff-Roberts, AD; Krishna, S; Kennerly, S
Published in: Proceedings of SPIE-The International Society for Optical Engineering
January 1, 2002

Mid-and far-infrared detectors operating at elevated temperatures (T > 150 K) are critical for imaging applications. In(Ga)As/GaAs quantum dots, grown by self-organized epitaxy, are an important material for the design and fabrication of high-temperature infrared photodetectors. Quantum dot infrared photodetectors (QDIPs) allow normal-incidence operation, in addition to low dark currents and multispectral response. The long intersubband relaxation time of electrons in quantum dots improves the responsivity of the detectors, contributing to better high-temperature performance. These devices also exhibit photoconductive gain. The characteristics of state-of-the-art lateral and vertical QDIPs will be described. We have achieved peak responsivity for wavelengths ranging from 3.7-18 μm. We have also obtained extremely low dark currents (Idark = 27 pA, T = 100 K, Vbias = 0.5 V), high detectivities (D* = 2.9×108 cmHz1/2/W, T = 100 K, Vbias = 0.2 V), and high operating temperatures (T = 150 K) for these quantum-dot detectors. The excellent performance of these devices at low bias voltages indicates the compatibility of high-temperature QDIPs with commercially available silicon read-out circuits for imaging focal plane arrays. These results, as well as infrared imaging with QDIP arrays, will be described and discussed. © 2002 SPIE · 0277-786X/02/$15.00.

Duke Scholars

Published In

Proceedings of SPIE-The International Society for Optical Engineering

DOI

ISSN

0277-786X

Publication Date

January 1, 2002

Volume

4646

Start / End Page

100 / 109

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Bhattacharya, P., Stiff-Roberts, A. D., Krishna, S., & Kennerly, S. (2002). Quantum dot infrared photodetectors. Proceedings of SPIE-The International Society for Optical Engineering, 4646, 100–109. https://doi.org/10.1117/12.470505
Bhattacharya, P., A. D. Stiff-Roberts, S. Krishna, and S. Kennerly. “Quantum dot infrared photodetectors.” Proceedings of SPIE-The International Society for Optical Engineering 4646 (January 1, 2002): 100–109. https://doi.org/10.1117/12.470505.
Bhattacharya P, Stiff-Roberts AD, Krishna S, Kennerly S. Quantum dot infrared photodetectors. Proceedings of SPIE-The International Society for Optical Engineering. 2002 Jan 1;4646:100–9.
Bhattacharya, P., et al. “Quantum dot infrared photodetectors.” Proceedings of SPIE-The International Society for Optical Engineering, vol. 4646, Jan. 2002, pp. 100–09. Scopus, doi:10.1117/12.470505.
Bhattacharya P, Stiff-Roberts AD, Krishna S, Kennerly S. Quantum dot infrared photodetectors. Proceedings of SPIE-The International Society for Optical Engineering. 2002 Jan 1;4646:100–109.

Published In

Proceedings of SPIE-The International Society for Optical Engineering

DOI

ISSN

0277-786X

Publication Date

January 1, 2002

Volume

4646

Start / End Page

100 / 109

Related Subject Headings

  • 5102 Atomic, molecular and optical physics
  • 4009 Electronics, sensors and digital hardware
  • 4006 Communications engineering