
Milling bifurcations from structural asymmetry and nonlinear regeneration
This paper investigates multiple modeling choices for analyzing the rich and complex dynamics of high-speed milling processes. Various models are introduced to capture the effects of asymmetric structural modes and the influence of nonlinear regeneration in a discontinuous cutting force model. Stability is determined from the development of a dynamic map for the resulting variational system. The general case of asymmetric structural elements is investigated with a fixed frame and rotating frame model to show differences in the predicted unstable regions due to parametric excitation. Analytical and numerical investigations are confirmed through a series of experimental cutting tests. The principal results are additional unstable regions, hysteresis in the bifurcation diagrams, and the presence of coexisting periodic and quasiperiodic attractors which is confirmed through experimentation. © Springer 2005.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences
Citation

Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Acoustics
- 49 Mathematical sciences
- 40 Engineering
- 09 Engineering
- 01 Mathematical Sciences