Skip to main content
Journal cover image

Methyl tert-butyl ether (MTBE) degradation by a microbial consortium.

Publication ,  Journal Article
Fortin, NY; Morales, M; Nakagawa, Y; Focht, DD; Deshusses, MA
Published in: Environmental microbiology
June 2001

The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (BTEX). In the present paper, the characteristics of a consortium degrading MTBE in liquid cultures are presented and discussed. MTBE degradation rate was fast and followed zero order kinetics when added at 100 mg l(-1). The residual MTBE concentration in batch degradation experiments ranged from below the detection limit (1 microg l(-1)) to 50 microg l(-1). The specific activity of the consortium ranged from 7 to 52 mgMTBE g(dw)(-1) h(-1) (i.e. 19-141 mgCOD g(dw) (-1) h(-1)). Radioisotope experiments showed that 79% of the carbon-MTBE was converted to carbon-carbon dioxide. The consortium was also capable of degrading a variety of hydrocarbons, including tert-butyl alcohol (TBA), tert-amyl methyl ether (TAME) and gasoline constituents such as benzene, toluene, ethylbenzene and xylene (BTEX). The consortium was also characterized by a very slow growth rate (0.1 d(-1)), a low overall biomass yield (0.11 gdw g(-1)MTBE; i.e. 0.040 gdw gCOD(-1)), a high affinity for MTBE and a low affinity for oxygen, which may be a reason for the slow or absence of MTBE biodegradation in situ. Still, the results presented here show promising perspectives for engineering the in situ bioremediation of MTBE.

Duke Scholars

Published In

Environmental microbiology

DOI

EISSN

1462-2920

ISSN

1462-2912

Publication Date

June 2001

Volume

3

Issue

6

Start / End Page

407 / 416

Related Subject Headings

  • Water Pollutants, Chemical
  • Microbiology
  • Methyl Ethers
  • Ecosystem
  • Culture Media
  • Carbon
  • Biomass
  • Biodegradation, Environmental
  • Bacteria
  • 3107 Microbiology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Fortin, N. Y., Morales, M., Nakagawa, Y., Focht, D. D., & Deshusses, M. A. (2001). Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environmental Microbiology, 3(6), 407–416. https://doi.org/10.1046/j.1462-2920.2001.00206.x
Fortin, N. Y., M. Morales, Y. Nakagawa, D. D. Focht, and M. A. Deshusses. “Methyl tert-butyl ether (MTBE) degradation by a microbial consortium.Environmental Microbiology 3, no. 6 (June 2001): 407–16. https://doi.org/10.1046/j.1462-2920.2001.00206.x.
Fortin NY, Morales M, Nakagawa Y, Focht DD, Deshusses MA. Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environmental microbiology. 2001 Jun;3(6):407–16.
Fortin, N. Y., et al. “Methyl tert-butyl ether (MTBE) degradation by a microbial consortium.Environmental Microbiology, vol. 3, no. 6, June 2001, pp. 407–16. Epmc, doi:10.1046/j.1462-2920.2001.00206.x.
Fortin NY, Morales M, Nakagawa Y, Focht DD, Deshusses MA. Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environmental microbiology. 2001 Jun;3(6):407–416.
Journal cover image

Published In

Environmental microbiology

DOI

EISSN

1462-2920

ISSN

1462-2912

Publication Date

June 2001

Volume

3

Issue

6

Start / End Page

407 / 416

Related Subject Headings

  • Water Pollutants, Chemical
  • Microbiology
  • Methyl Ethers
  • Ecosystem
  • Culture Media
  • Carbon
  • Biomass
  • Biodegradation, Environmental
  • Bacteria
  • 3107 Microbiology