Tabletop resonant infrared matrix-assisted pulsed laser evaporation of light-emitting organic thin films
Structural optimization of light-emitting polymer, or organic semiconductor, thin films deposited by tabletop 2.9 μm resonant infrared matrix-assisted pulsed evaporation (RIR-MAPLE) is investigated. Surface morphology of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (MEH-CN-PPV) and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylene vinylene] (MEH-PPV) films are analyzed using optical and atomic force microscopy. These films are deposited using different target-to-substrate distances, ambient base pressures, laser fluences, and substrate temperatures, and with different target compositions comprising tetrahydrofuran (THF), chlorobenzene, toluene, o-xylene, chloroform, phenol:THF, and phenol:water. The corresponding optical behavior and chemical structure of the deposited films is investigated with photoluminescence spectroscopy and Fourier transform infrared spectroscopy. The use of a novel RIR-MAPLE emulsion target recipe enables the successful incorporation of MEH-CN-PPV and MEH-PPV polymers into ice matrices, and an MEH-PPV thin film with near-featureless surface morphology and an unprecedented rms surface roughness of 0.292 nm is demonstrated. © 2006 IEEE.
Duke Scholars
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4008 Electrical engineering
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics
Citation
Published In
DOI
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 5102 Atomic, molecular and optical physics
- 4009 Electronics, sensors and digital hardware
- 4008 Electrical engineering
- 0906 Electrical and Electronic Engineering
- 0206 Quantum Physics
- 0205 Optical Physics