Framed knot contact homology
Publication
, Journal Article
Ng, L
Published in: Duke Mathematical Journal
February 1, 2008
We extend knot contact homology to a theory over the ring ℤ[λ±1, μ±1] with the invariant given topologically and combinatorially. The improved invariant, which is defined for framed knots in S3 and can be generalized to knots in arbitrary manifolds, distinguishes the unknot and can distinguish mutants. It contains the Alexander polynomial and naturally produces a two-variable polynomial knot invariant that is related to the A-polynomial.
Duke Scholars
Published In
Duke Mathematical Journal
DOI
ISSN
0012-7094
Publication Date
February 1, 2008
Volume
141
Issue
2
Start / End Page
365 / 406
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics
Citation
APA
Chicago
ICMJE
MLA
NLM
Ng, L. (2008). Framed knot contact homology. Duke Mathematical Journal, 141(2), 365–406. https://doi.org/10.1215/S0012-7094-08-14125-0
Ng, L. “Framed knot contact homology.” Duke Mathematical Journal 141, no. 2 (February 1, 2008): 365–406. https://doi.org/10.1215/S0012-7094-08-14125-0.
Ng L. Framed knot contact homology. Duke Mathematical Journal. 2008 Feb 1;141(2):365–406.
Ng, L. “Framed knot contact homology.” Duke Mathematical Journal, vol. 141, no. 2, Feb. 2008, pp. 365–406. Scopus, doi:10.1215/S0012-7094-08-14125-0.
Ng L. Framed knot contact homology. Duke Mathematical Journal. 2008 Feb 1;141(2):365–406.
Published In
Duke Mathematical Journal
DOI
ISSN
0012-7094
Publication Date
February 1, 2008
Volume
141
Issue
2
Start / End Page
365 / 406
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 0101 Pure Mathematics