Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis.

Publication ,  Journal Article
Chawla, AS; Samei, E; Saunders, R; Abbey, C; Delong, D
Published in: Med Phys
August 2007

The effect of reduction in dose levels normally used in mammographic screening procedures on the detection of breast lesions were analyzed. Four types of breast lesions were simulated and inserted into clinically-acquired digital mammograms. Dose reduction by 50% and 75% of the original clinically-relevant exposure levels were simulated by adding corresponding simulated noise into the original mammograms. The mammograms were converted into luminance values corresponding to those displayed on a clinical soft-copy display station and subsequently analyzed by Laguerre-Gauss and Gabor channelized Hotelling observer models for differences in detectability performance with reduction in radiation dose. Performance was measured under a signal known exactly but variable detection task paradigm in terms of receiver operating characteristics (ROC) curves and area under the ROC curves. The results suggested that luminance mapping of digital mammograms affects performance of model observers. Reduction in dose levels by 50% lowered the detectability of masses with borderline statistical significance. Dose reduction did not have a statistically significant effect on detection of microcalcifications. The model results indicate that there is room for optimization of dose level in mammographic screening procedures.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Med Phys

DOI

ISSN

0094-2405

Publication Date

August 2007

Volume

34

Issue

8

Start / End Page

3385 / 3398

Location

United States

Related Subject Headings

  • Sensitivity and Specificity
  • Reproducibility of Results
  • Radiometry
  • Radiographic Image Interpretation, Computer-Assisted
  • ROC Curve
  • Observer Variation
  • Nuclear Medicine & Medical Imaging
  • Models, Theoretical
  • Mammography
  • Image Processing, Computer-Assisted
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chawla, A. S., Samei, E., Saunders, R., Abbey, C., & Delong, D. (2007). Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis. Med Phys, 34(8), 3385–3398. https://doi.org/10.1118/1.2756607
Chawla, Amarpreet S., Ehsan Samei, Robert Saunders, Craig Abbey, and David Delong. “Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis.Med Phys 34, no. 8 (August 2007): 3385–98. https://doi.org/10.1118/1.2756607.
Chawla AS, Samei E, Saunders R, Abbey C, Delong D. Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis. Med Phys. 2007 Aug;34(8):3385–98.
Chawla, Amarpreet S., et al. “Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis.Med Phys, vol. 34, no. 8, Aug. 2007, pp. 3385–98. Pubmed, doi:10.1118/1.2756607.
Chawla AS, Samei E, Saunders R, Abbey C, Delong D. Effect of dose reduction on the detection of mammographic lesions: a mathematical observer model analysis. Med Phys. 2007 Aug;34(8):3385–3398.

Published In

Med Phys

DOI

ISSN

0094-2405

Publication Date

August 2007

Volume

34

Issue

8

Start / End Page

3385 / 3398

Location

United States

Related Subject Headings

  • Sensitivity and Specificity
  • Reproducibility of Results
  • Radiometry
  • Radiographic Image Interpretation, Computer-Assisted
  • ROC Curve
  • Observer Variation
  • Nuclear Medicine & Medical Imaging
  • Models, Theoretical
  • Mammography
  • Image Processing, Computer-Assisted