Simulation of hyper-inverse Wishart distributions in graphical models
We introduce and exemplify an efficient method for direct sampling from hyper-inverse Wishart distributions. The method relies very naturally on the use of standard junction-tree representation of graphs, and couples these with matrix results for inverse Wishart distributions. We describe the theory and resulting computational algorithms for both decomposable and nondecomposable graphical models. An example drawn from financial time series demonstrates application in a context where inferences on a structured covariance model are required. We discuss and investigate questions of scalability of the simulation methods to higher-dimensional distributions. The paper concludes with general comments about the approach, including its use in connection with existing Markov chain Monte Carlo methods that deal with uncertainty about the graphical model structure. © 2007 Biometrika Trust.
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Statistics & Probability
- 4905 Statistics
- 3802 Econometrics
- 1403 Econometrics
- 0104 Statistics
- 0103 Numerical and Computational Mathematics